Save This Manual Keep this manual for the safety warnings and precautions, assembly, operating, inspection, maintenance and cleaning procedures. Write the product’s serial number in the back of the manual near the assembly diagram (or month and year of purchase if product has no number). Keep this manual and the receipt in a safe and dry place for future reference.

EASY-FLUX125

56355

Visit our website at: http://www.harborfreight.com
Email our technical support at: productsupport@harborfreight.com

When unpacking, make sure that the product is intact and undamaged. If any parts are missing or broken, please call 1-888-380-0318 as soon as possible.

WARNING
Read this material before using this product. Failure to do so can result in serious injury. SAVE THIS MANUAL.
Table of Contents

Safety .. 2
Specifications .. 7
Setup .. 8
Basic Welding.. 12

Welding Tips.. 20
Maintenance .. 24
Parts List and Diagram 27
Warranty .. 28

<table>
<thead>
<tr>
<th>WARNING SYMBOLS AND DEFINITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>This is the safety alert symbol. It is used to alert you to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death.</td>
</tr>
<tr>
<td>DANGER</td>
</tr>
<tr>
<td>WARNING</td>
</tr>
<tr>
<td>CAUTION</td>
</tr>
<tr>
<td>NOTICE CAUTION</td>
</tr>
</tbody>
</table>

IMPORTANT SAFETY INFORMATION

WARNING

Read all safety warnings and instructions. Failure to follow the warnings and instructions may result in electric shock, fire and/or serious injury. Save all warnings and instructions for future reference.

General Safety

PROTECT yourself and others. Read and understand this information.

1. Before use, read and understand manufacturer's instructions, Material Safety Data Sheets (MSDS's), employer's safety practices, and ANSI Z49.1.
2. Keep out of reach of children. Keep children and bystanders away while operating.
3. Place the welder on a stable location before use. If it falls while plugged in, severe injury, electric shock, or fire may result.
4. Do not overreach. Keep proper footing and balance at all times.
5. Stay alert, watch what you are doing and use common sense when operating a welder. Do not use a welder while you are tired or under the influence of drugs, alcohol or medication. A moment of inattention while operating welders may result in serious personal injury.
6. Avoid unintentional starting. Make sure you are prepared to begin work before turning on the Welder.
7. Never leave the Welder unattended while energized. Turn power off if you have to leave.
8. The warnings, precautions, and instructions discussed in this instruction manual cannot cover all possible conditions and situations that may occur. It must be understood by the operator that common sense and caution are factors which cannot be built into this product, but must be supplied by the operator.
Fume and Gas Safety

INHALATION HAZARD:
Welding and Plasma Cutting Produce toxic fumes.

1. **Exposure to welding or cutting exhaust fumes** can increase the risk of developing certain cancers, such as cancer of the larynx and lung cancer. Also, some diseases that may be linked to exposure to welding or plasma cutting exhaust fumes are:
 - Early onset of Parkinson’s Disease
 - Heart disease
 - Ulcers
 - Damage to the reproductive organs
 - Inflammation of the small intestine or stomach
 - Kidney damage
 - Respiratory diseases such as emphysema, bronchitis, or pneumonia

 Use natural or forced air ventilation and wear a respirator approved by NIOSH to protect against the fumes produced to reduce the risk of developing the above illnesses.

2. **Do not use near degreasing or painting operations.**

3. **Keep head out of fumes.**
 Do not breathe exhaust fumes.

4. **Use enough ventilation, exhaust at arc, or both, to keep fumes and gases from breathing zone and general area.** If engineering controls are not feasible, use an approved respirator.

5. **Work in a confined area only if it is well-ventilated, or while wearing an air-supplied respirator.**

6. **Have a recognized specialist in Industrial Hygiene or Environmental Services check the operation and air quality and make recommendations for the specific welding situation.** Follow OSHA guidelines for Permissible Exposure Limits (PEL’s) and the American Conference of Governmental Industrial Hygienists recommendations for Threshold Limit Values (TLV’s) for fumes and gases.

Arc Ray Safety

ARC RAYS can injure eyes and burn skin.

1. **Wear ANSI-approved welding eye protection featuring at least a number 10 shade lens rating.**

2. **Wear leather leggings, fire resistant shoes or boots during use.** Do not wear pants with cuffs, shirts with open pockets, or any clothing that can catch and hold molten metal or sparks.

3. **Keep clothing free of grease, oil, solvents, or any flammable substances.** Wear dry, insulating gloves and protective clothing.

4. **Wear an approved head covering to protect the head and neck.** Use aprons, cape, sleeves, shoulder covers, and bibs designed and approved for welding and cutting procedures.

5. **When welding/cutting overhead or in confined spaces, wear flame resistant ear plugs or ear muffs to keep sparks out of ears.**
Electrical Safety

ELECTRIC SHOCK can KILL.

1. **Turn off, disconnect power, and discharge electrode to ground before setting down torch/electrode holder and before service.**

2. **Do not touch energized electrical parts.** Wear dry, insulating gloves. Do not touch electrode holder, electrode, welding torch, or welding wire with bare hand. Do not wear wet or damaged gloves.

3. **Connect to grounded, GFCI-protected power supply only.**

4. **Do not use near water or damp objects.**

5. **People with pacemakers should consult their physician(s) before use.** Electromagnetic fields in close proximity to heart pacemaker could cause pacemaker interference or pacemaker failure.

6. **Do not expose welders to rain or wet conditions.** Water entering a welder will increase the risk of electric shock.

7. **Do not abuse the cord.** Never use the cord for carrying, pulling or unplugging the welder. Keep cord away from heat, oil, sharp edges or moving parts. Damaged or entangled cords increase the risk of electric shock.

8. **Do not use outdoors.**

9. **Insulate yourself from the workpiece and ground.** Use nonflammable, dry insulating material if possible, or use dry rubber mats, dry wood or plywood, or other dry insulating material large enough to cover your full area of contact with the work or ground.

Fire Safety

ARC AND HOT SLAG can cause fire.

1. **Clear away or protect flammable objects.** Remove or make safe all combustible materials for a radius of 35 feet (10 meters) around the work area. Use a fire resistant material to cover or block all open doorways, windows, cracks, and other openings.

2. **Keep ABC-type fire extinguisher near work area and know how to use it.**

3. **Maintain a safe working environment.** Keep the work area well lit. Make sure there is adequate surrounding workspace. Keep the work area free of obstructions, grease, oil, trash, and other debris.

4. **Do not operate welders in atmospheres containing dangerously reactive or flammable liquids, gases, vapors, or dust.** Provide adequate ventilation in work areas to prevent accumulation of such substances. *Welders create sparks which may ignite flammable substances or make reactive fumes toxic.*

5. **If working on a metal wall, ceiling, etc., prevent ignition of combustibles on the other side by moving the combustibles to a safe location.** If relocation of combustibles is not possible, designate someone to serve as a fire watch, equipped with a fire extinguisher, during the cutting process and for at least one half hour after the cutting is completed.

6. **Do not weld or cut on materials having a combustible coating or combustible internal structure, as in walls or ceilings, without an approved method for eliminating the hazard.**

7. **Do not dispose of hot slag in containers holding combustible materials.**

8. **After welding, make a thorough examination for evidence of fire.** Be aware that easily visible smoke or flame may not be present for some time after the fire has started.

9. **Do not apply heat to a container that has held an unknown substance or a combustible material whose contents, when heated, can produce flammable or explosive vapors.** Clean and purge containers before applying heat. Vent closed containers, including castings, before preheating, welding, or cutting.
Welder Use and Care

1. Do not use the welder if the switch does not turn it on and off. Any welder that cannot be controlled with the switch is dangerous and must be repaired.

2. Disconnect the plug from the power source before making any adjustments, changing accessories, or storing welders. Such preventive safety measures reduce the risk of starting the welder accidentally.

3. Prevent unintentional starting. Ensure the switch is in the off-position before connecting to power source or moving the welder. Carrying or energizing welders that have the switch on invites accidents.

4. Store idle welders out of the reach of children and do not allow persons unfamiliar with the welder or these instructions to operate the welder. Welders are dangerous in the hands of untrained users.

5. Use the welder and accessories in accordance with these instructions, taking into account the working conditions and the work to be performed. Use of the welder for operations different from those intended could result in a hazardous situation.

6. Do not use the welder for pipe thawing.

Maintenance

1. Maintain welders. Check for misalignment or binding of moving parts, breakage of parts and any other condition that may affect the welder’s operation. If damaged, have the welder repaired before use. Many accidents are caused by poorly maintained welders.

2. Have your welder serviced by a qualified repair person using only identical replacement parts. This will ensure that the safety of the welder is maintained.

3. Maintain labels and nameplates on the Welder. These carry important information. If unreadable or missing, contact Harbor Freight Tools for a replacement.

4. Unplug before maintenance. Unplug the Welder from its electrical outlet before any inspection, maintenance, or cleaning procedures.

SAVE THESE INSTRUCTIONS.
Grounding

WARNING

TO PREVENT ELECTRIC SHOCK AND DEATH FROM INCORRECT GROUNDING WIRE CONNECTION:

Check with a qualified electrician if you are in doubt as to whether the outlet is properly grounded.

Do not use the Welder if the power cord or plug is damaged. If damaged, have it repaired by a service facility before use. If the plug will not fit the outlet, have a proper outlet installed by a qualified electrician, do not use adapter plugs.

1. The green wire inside the cord is connected to the grounding system in the Welder. The green wire in the cord must be the only wire connected to the Welder’s grounding system and must never be attached to an electrically “live” terminal. Never leave the grounding wire disconnected or modify the Power Cord Plug in any way.

2. Make sure the tool is connected to an outlet having the same configuration as the plug. If the tool must be reconnected for use on a different type of electric circuit, the reconnection should be made by qualified service personnel; and after reconnection, the tool should comply with all local codes and ordinances.

Extension Cords

Do not use an extension cord on this Welder.

Replacement Cords

1. Use only the supplied power cord for this Welder or an identical replacement cord.

2. Do not install a thinner or longer cord on this Welder.

3. Do not patch cords of any length together for this item. Patches may allow moisture to penetrate the insulation, resulting in electric shock.
Symbology

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wire Feed (Speed)</td>
</tr>
<tr>
<td></td>
<td>Workpiece Ground Cable</td>
</tr>
<tr>
<td></td>
<td>Torch Cable</td>
</tr>
<tr>
<td></td>
<td>Overheat Shutdown Indicator</td>
</tr>
<tr>
<td></td>
<td>Cooling Fan</td>
</tr>
<tr>
<td></td>
<td>Housing Ground Point</td>
</tr>
<tr>
<td></td>
<td>Volts Alternating Current</td>
</tr>
<tr>
<td></td>
<td>Amperes</td>
</tr>
<tr>
<td></td>
<td>Open Circuit Voltage</td>
</tr>
<tr>
<td></td>
<td>Kilovolt Amperes (Volts / 1000 * Amperes)</td>
</tr>
<tr>
<td></td>
<td>Inches Per Minute</td>
</tr>
<tr>
<td></td>
<td>American Wire Gauge</td>
</tr>
<tr>
<td></td>
<td>Electric Shock Hazard. Do not touch energized parts.</td>
</tr>
<tr>
<td></td>
<td>Inhalation Hazard. Keep head out of fumes and use proper ventilation.</td>
</tr>
<tr>
<td></td>
<td>Read manual before setup and/or use.</td>
</tr>
<tr>
<td></td>
<td>Fire Hazard. Keep flammable materials away during welding. Spatter can cause accidental fires.</td>
</tr>
<tr>
<td></td>
<td>Arc Ray Hazard. Wear welding helmet with properly rated filter lens.</td>
</tr>
<tr>
<td></td>
<td>Pacemaker Hazard. Welding processes may interfere with pacemakers. Consult doctor before use.</td>
</tr>
</tbody>
</table>

Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Input</td>
<td>120VAC / 60Hz</td>
</tr>
<tr>
<td>Current Input</td>
<td>23A</td>
</tr>
<tr>
<td>Welding Current Range</td>
<td>30–125A</td>
</tr>
<tr>
<td>Rated Duty Cycle</td>
<td>30% @ 90A</td>
</tr>
<tr>
<td>Open Circuit Voltage</td>
<td>42V</td>
</tr>
<tr>
<td>Wire Speed</td>
<td>60–200 IPM</td>
</tr>
<tr>
<td>Welding Wire Capacity</td>
<td>0.030"/0.035" Flux Cored</td>
</tr>
<tr>
<td>Wire Spool Capacity</td>
<td>2 lb spool</td>
</tr>
</tbody>
</table>
Setup

Read the ENTIRE IMPORTANT SAFETY INFORMATION section at the beginning of this manual including all text under subheadings therein before set up or use of this product.

WARNING TO PREVENT SERIOUS INJURY FROM ACCIDENTAL OPERATION: Turn the Power Switch off and unplug the Welder before setup.

Note: Remove the protective foam and cardboard from the Welder before setup.

Wire Spool Installation/Wire Setup

1. Turn the Power Switch OFF and unplug the Welder before proceeding.

2. Push back on the Door Latch, then open the Door.

3. Remove the Spool Knob, Spring, and Spool Plate. Remove the old Spool and all remaining wire from the liners.

4. Place the new Wire Spool over the Spool Spindle as illustrated.
 To prevent wire feed problems, set the Spool so that it will unwind counterclockwise.

5. Replace the Spool Plate and Spring over the Spool Spindle and secure Spool in place with the Spool Knob.
 Notice: If Wire Spool can spin freely, Spool Knob is too loose. This will cause the welding wire to unravel and unspool which can cause tangling and feeding problems.
6. Turn the Feed Tensioner knob counterclockwise to loosen it enough to pull it down to remove tension. The spring-loaded Idler Arm will move up as shown.

7. **Feed Roller Instructions:**
 Check that the Feed Roller is turned to properly match the wire size marked on the Wire Spool.

 a. Twist the Feed Roller Knob counterclockwise to release it.

 b. Remove the Feed Roller Knob to expose the Feed Roller.

 c. Flip or replace the Feed Roller as needed and confirm that the number showing is the same as the wire diameter on the Spool.

 d. Twist the Feed Roller Knob back into place to secure the Feed Roller.
IMPORTANT

Securely hold onto the end of the welding wire and keep tension on it during the following steps.

If this is not done, the welding wire will unravel and unspool which can cause tangling and feeding problems.

8. Cut off all bent and crimped wire. The cut end must have no burrs or sharp edges; cut again if needed.

9. Keep tension on the wire and guide at least 12 inches of wire into the Wire Inlet Liner and Feed Guide.

10. Make sure the welding wire is resting in the groove of the Feed Roller, then push the wire Idler Arm down, and swing the Feed Tensioner up to latch it across the tip of the arm. After the wire is held by the Tensioner, you may release it.

Note: The tension should be 2–3. Too much force on flux-cored wire will crush it and cause feeding issues.

11. Unscrew the Contact Tip counterclockwise and remove.

12. Lay the Flux Gun Cable out in a straight line so that the welding wire moves through it easily. Leave the cover open, so that the feed mechanism can be observed.

WARNING

The following steps require applying power to the Welder with the cover open.

To prevent serious injury from fire or electric shock:

1. **Do not touch anything, especially not the Ground Clamp, with the Gun or welding wire or an arc will be ignited.**

2. **Do not touch internal Welder components while it is plugged in.**

13. Turn the Power Switch off and do not touch the Gun’s Trigger and before connecting Power Cord:

14. Plug the Power Cord into a properly grounded, GFCI protected 120VAC (20 amp rated) receptacle that matches the plug and turn the Power Switch ON.

Note: The circuit must be equipped with delayed action-type circuit breaker or fuses.
15. Point the Gun away from all objects. Press and hold the Cold Feed Switch until the wire feeds through the end of the Gun two inches.

The wire liner may come out with the welding wire. This is normal, just turn off the Welder and push the wire liner back into the Gun.

If the wire does not feed properly and the Spool is stationary, turn OFF and unplug the Welder and slightly tighten the Feed Tensioner clockwise before retrying.

16. To check the wire's drive tension, press and hold Cold Feed Switch to feed the wire against a piece of wood from 2 to 3 inches away.

If the wire stops instead of bending, unplug the Welder, slightly tighten the Feed Tensioner clockwise, and try again. If the wire bends from the feed pressure, then the tension is set properly.

17. Turn OFF the Power Switch and unplug the Power Cord from its electrical outlet.

18. Select a Contact Tip that is compatible with the welding wire used. Slide the Contact Tip over the wire and thread it clockwise into the Flux Gun. Tighten the Contact Tip.

19. Slide the Nozzle onto the gun as well.

20. Cut the wire off at 1/2" from tip (1/2" stickout).

21. Close the Door. Make sure Door is securely latched.
Basic Welding

Read the ENTIRE IMPORTANT SAFETY INFORMATION section at the beginning of this manual including all text under subheadings therein before welding.

⚠️ WARNING

TO PREVENT SERIOUS INJURY:
Protective gear must be worn when using the Welder; minimum shade number 10 full face shield (or welding mask), ear protection, welding gloves, sleeves and apron, NIOSH-approved respirator, and fire resistant work clothes without pockets should be worn when welding.
Light from the arc can cause permanent damage to the eyes and skin.
Do not breathe arc fumes.
Flux-cored wire welding is used to weld mild steel and stainless steel without shielding gas.
Good welding takes a degree of skill and experience.
Practice a few sample welds on scrap before welding your first project. Additional practice periods are recommended whenever you weld:
- a different thickness of material
- a different type of material
- a different type of connection
- using a different process (MIG vs. Flux)

Make practice welds on pieces of scrap to practice technique before welding anything of value.

⚠️ WARNING

TO PREVENT SERIOUS INJURY, FIRE AND BURNS:
Keep welding tip clear of grounded objects whenever unit is plugged in and turned on.

Practice your welding technique on scrap pieces before welding anything of value.
Front Panel Controls

- Alarm Indicator
- Power Indicator
- Voltage Knob
- Wire Speed Knob
- Flux Gun
- Ground Clamp

For technical questions, please call 1-888-380-0318.
Weld Settings

Refer to the Settings Chart on the inside of the Welder door for Flux-Cored and MIG Weld settings. The chart is only intended to show general guidelines for different wire sizes and for different thicknesses of material. The initial settings used at the beginning of a weld may need to be adjusted after stopping and carefully inspecting the weld. Proper welding takes experience.
Duty Cycle (Duration of Use)

Avoid damage to the Welder by not welding for more than the prescribed duty cycle time. The Duty Cycle defines the number of minutes, within a 10 minute period, during which a given welder can produce a particular welding current without overheating.

For example, a welder with a 40% duty cycle at 90A welding current must be allowed to rest for at least 6 minutes after every 4 minutes of continuous welding.

Failure to carefully observe any duty cycle limitations can easily over-stress a welder’s power generation system contributing to premature welder failure.

This Welder has an internal thermal protection system to help prevent this sort of over-stress. When the Welder overheats, it automatically shuts down and the Overload Indicator lights. The Welder automatically returns to service after cooling off. Should this occur, rest the Flux Gun on an electrically non-conductive, heat-proof surface, such as a concrete slab, well clear of the ground clamp.

Allow the Welder to cool with the Power Switch on, so that the internal Fan will help cool the Welder.

When the Overload Indicator is no longer lit and the Welder can be used again, use shorter welding periods and longer rest periods to prevent needless wear.
Setting Up The Weld

1. **Make practice welds on pieces of scrap the same thickness as your intended workpiece to practice technique before welding anything of value.** Clean the weld surfaces thoroughly with a wire brush or angle grinder; there must be no rust, paint, oil, or other materials on the weld surfaces, only bare metal.

2. Use clamps (not included) to hold the workpieces in position so that you can concentrate on proper welding technique. The distance (if any) between the two workpieces must be controlled properly to allow the weld to hold both sides securely while allowing the weld to penetrate fully into the joint. The edges of thicker workpieces may need to be chamfered (or beveled) to allow proper weld penetration.

Notice: When welding equipment on a vehicle, disconnect the vehicle battery power from both the positive connection and the ground before welding. This prevents damage to some vehicle electrical systems and electronics due to the high voltage and high frequency bursts common in welding.

3. Clamp Ground Cable to bare metal on the workpiece near the weld area, or to metal workbench where the workpiece is clamped.

4. Set the Wire Speed and Voltage Knobs to the desired settings. Refer to the Settings Chart on the inside of the Welder door.

Note: The initial settings may need to be adjusted after stopping and carefully inspecting the weld. Proper welding takes experience.
5. Turn the Power Switch off and do not touch the Gun’s Trigger and before connecting Power Cord: Plug the Power Cord into a properly grounded, GFCI protected 120VAC (20 amp rated) receptacle that matches the plug and turn the Power Switch ON.

Note: The circuit must be equipped with delayed action-type circuit breaker or fuses.

6. Set Flux Gun down on nonconductive, nonflammable surface away from any grounded objects. Turn the Power Switch ON.
Basic Welding Technique

1. Press (and hold) Trigger and contact the area to be welded with electrode wire to ignite arc.

2. For a narrow weld, you can usually draw the wire in a steady straight line. This is called a **stringer bead**.
 For a wider weld, draw the wire back and forth across the joint. This is called a **weave bead** and takes practice to perform properly.

3. Direct the welding wire straight into the joint. This gives an angle of 90° (straight up and down) for butt (end to end) welds, and an angle of 45° for fillet (T-shaped) welds.

4. When using flux-cored wire, the end of the Flux Gun should be tilted so that wire is angled anywhere in-between straight on and 15° in the direction you are welding. The amount of tilt is called the **drag angle**.

5. The Contact Tip should remain within 1/2" of the work surface. This distance is called **CTWD** - Contact Tip to Work Distance.
Note: If Welder is used too long, the Overload Indicator lights up and the unit automatically shuts down. The Welder automatically returns to service after cooling off. Should this occur, rest the Flux Gun on an electrically non-conductive, heat-proof surface, such as a concrete slab, away from the ground clamp.

Allow the Welder to cool with the Power Switch on, so that the internal Fan will help cool the Welder.

When the Overload Indicator is no longer lit and the Welder can be used again, use shorter welding periods and longer rest periods to help prevent needless wear.

6. After welding the test weld on a piece of scrap for a few seconds, stop, and check your progress. Clean, then compare your weld’s appearance with the diagrams and descriptions in the Welding Tips section starting on the next page. After making any necessary adjustments, continue to weld while carefully following the DUTY CYCLE guidelines as explained on page 15.

CAUTION! Weld will be hot, do not touch.

7. When welding is complete, set the Flux Gun down on a heat-proof, electrically non-conductive surface. Turn the Power Switch OFF.

8. Allow Welder to cool down, then unplug the Power Cord.

9. Remove Ground Clamp from workpiece or table and disconnect Flux Gun.

10. Respool wire by clipping wire, removing contact tip on Flux Gun, releasing Idler Arm on Wire Feed mechanism, and rotating the Wire Spool counterclockwise. Be sure to securely hold wire as it is being respooled because the end of wire has a tendency to quickly unravel once it clears the wire feeder.
A good way to test welding technique is to examine a weld’s appearance after it has cooled and the slag has been removed. Then, better welding can be learned by adjusting your weld technique to remedy any problems found.

Cleaning the Weld

WARNING

TO PREVENT SERIOUS INJURY:
Continue to wear ANSI-approved safety goggles and protective wear when cleaning a weld. Sparks or chips may fly when cleaning.

1. A weld from flux-cored wire will be covered by slag. Use a chipping hammer to knock this off. **Be careful not to damage the weld or base material.**

2. Use a wire brush to further clean the weld or use an angle grinder (sold separately) to shape the weld.

Strike Test

A test weld on a PIECE OF SCRAP can be tested by using the following procedure.

WEAR ANSI-APPROVED SAFETY GOGGLES DURING THIS PROCEDURE.

WARNING! This test WILL damage the weld it is performed on. This test is ONLY an indicator of weld technique and is not intended to test working welds.

1. After two scraps have been welded together and the weld has cooled, clamp one scrap in a sturdy vise.

2. Stay clear from underneath while you strike the opposite scrap with a heavy hammer, preferably a dead-blow hammer.

3. A **GOOD WELD** will deform but not break, as shown on top. A **POOR WELD** will be brittle and snap at the weld, as shown on bottom.
Workpiece Heat Control / Weld Penetration

INADEQUATE PENETRATION PROPER PENETRATION EXCESS PENETRATION OR BURN-THROUGH

How to increase workpiece heat and increase penetration:
(to weld THICKER workpieces properly)
- Increase weld current
- Decrease travel speed
- Use faster wire feed
- Use shorter CTWD

How to reduce workpiece heat and limit penetration:
(to weld THINNER workpieces properly)
- Decrease weld current
- Increase travel speed
- Use slower wire feed
- Use longer CTWD

Example Weld Diagrams

- Good Weld
- Voltage Too Low or Wire Feed Too Slow
- Voltage Too High or Wire Feed Too Fast
- Travel Speed Too Fast
- Travel Speed Too Slow
- CTWD Too Long

TO CORRECT:
- travel slower
- travel faster
- or
- use less than 1/2" CTWD

For technical questions, please call 1-888-380-0318.
Penetration (Workpiece Heat Control)

EXCESS PENETRATION OR BURN-THROUGH
Weld droops on top and underneath, or falls through entirely, making a hole.

PROPER PENETRATION
Weld is visible underneath and bulges slightly on top.

INADEQUATE PENETRATION
Weld does not penetrate the joint fully, just on the surface.

POSSIBLE CAUSES AND SOLUTIONS

1. **Workpiece overheating:**
 - Reduce wire feed speed.
 - Decrease weld current.

2. **Travel speed too slow:**
 - Increase travel speed and ensure that travel speed is kept steady.

3. **Excessive material at weld:**
 - Reduce wire feed speed.

Bend at Joint

POSSIBLE CAUSES AND SOLUTIONS

1. **Improper clamping:**
 - Clamp workpieces securely.
 - Make tack welds to hold workpieces.

2. **Excessive heat:**
 - Weld a small portion and allow to cool before proceeding.
 - Increase travel speed.
 - Reduce wire feed speed.

Weld Not Adhering Properly

Gaps present between weld and previous bead or between weld and workpiece. See areas below.

POSSIBLE CAUSES AND SOLUTIONS

1. **Incorrect welding technique:**
 - Place stringer bead at correct place in joint.
 - Adjust workpiece position or weld angle to permit proper welding to bottom of piece.
 - Pause briefly at sides during weave bead.
 - Keep arc on leading edge of weld puddle.
 - Hold Flux Gun at proper angles.

2. **Insufficient weld heat:**
 - Increase current.
 - Increase wire feed speed.

3. **Dirty workpiece:**
 - Clean workpiece down to bare metal.

4. **Insufficient weld material:**
 - Increase wire feed speed.

5. **Workpiece gap too narrow:**
 - Widen groove or increase bevel.

Coat of Slag Over Weld

POSSIBLE CAUSES AND SOLUTIONS

1. **Workpiece overheating:**
 - Reduce wire feed speed.
 - Decrease weld current.

2. **Travel speed too slow:**
 - Increase travel speed and ensure that travel speed is kept steady.

3. **Excessive material at weld:**
 - Reduce wire feed speed.

Weld Problems

Weld droops on top and underneath, or falls through entirely, making a hole.

Weld is visible underneath and bulges slightly on top.

Weld does not penetrate the joint fully, just on the surface.

POSSIBLE CAUSES AND SOLUTIONS

1. **Improper clamping:**
 - Clamp workpieces securely.
 - Make tack welds to hold workpieces.

2. **Excessive heat:**
 - Weld a small portion and allow to cool before proceeding.
 - Increase travel speed.
 - Reduce wire feed speed.

Weld Not Adhering Properly

Gaps present between weld and previous bead or between weld and workpiece. See areas below.

POSSIBLE CAUSES AND SOLUTIONS

1. **Incorrect welding technique:**
 - Place stringer bead at correct place in joint.
 - Adjust workpiece position or weld angle to permit proper welding to bottom of piece.
 - Pause briefly at sides during weave bead.
 - Keep arc on leading edge of weld puddle.
 - Hold Flux Gun at proper angles.

2. **Insufficient weld heat:**
 - Increase current.
 - Increase wire feed speed.

3. **Dirty workpiece:**
 - Clean workpiece down to bare metal.

4. **Insufficient weld material:**
 - Increase wire feed speed.

5. **Workpiece gap too narrow:**
 - Widen groove or increase bevel.

Coat of Slag Over Weld

POSSIBLE CAUSES AND SOLUTIONS

1. **Workpiece overheating:**
 - Reduce wire feed speed.
 - Decrease weld current.

2. **Travel speed too slow:**
 - Increase travel speed and ensure that travel speed is kept steady.

3. **Excessive material at weld:**
 - Reduce wire feed speed.

Weld Problems

Weld droops on top and underneath, or falls through entirely, making a hole.

Weld is visible underneath and bulges slightly on top.

Weld does not penetrate the joint fully, just on the surface.

POSSIBLE CAUSES AND SOLUTIONS

1. **Improper clamping:**
 - Clamp workpieces securely.
 - Make tack welds to hold workpieces.

2. **Excessive heat:**
 - Weld a small portion and allow to cool before proceeding.
 - Increase travel speed.
 - Reduce wire feed speed.

Weld Not Adhering Properly

Gaps present between weld and previous bead or between weld and workpiece. See areas below.

POSSIBLE CAUSES AND SOLUTIONS

1. **Incorrect welding technique:**
 - Place stringer bead at correct place in joint.
 - Adjust workpiece position or weld angle to permit proper welding to bottom of piece.
 - Pause briefly at sides during weave bead.
 - Keep arc on leading edge of weld puddle.
 - Hold Flux Gun at proper angles.

2. **Insufficient weld heat:**
 - Increase current.
 - Increase wire feed speed.

3. **Dirty workpiece:**
 - Clean workpiece down to bare metal.

4. **Insufficient weld material:**
 - Increase wire feed speed.

5. **Workpiece gap too narrow:**
 - Widen groove or increase bevel.

Coat of Slag Over Weld

POSSIBLE CAUSES AND SOLUTIONS

1. **Workpiece overheating:**
 - Reduce wire feed speed.
 - Decrease weld current.

2. **Travel speed too slow:**
 - Increase travel speed and ensure that travel speed is kept steady.

3. **Excessive material at weld:**
 - Reduce wire feed speed.

Weld Problems

Weld droops on top and underneath, or falls through entirely, making a hole.

Weld is visible underneath and bulges slightly on top.

Weld does not penetrate the joint fully, just on the surface.

POSSIBLE CAUSES AND SOLUTIONS

1. **Improper clamping:**
 - Clamp workpieces securely.
 - Make tack welds to hold workpieces.

2. **Excessive heat:**
 - Weld a small portion and allow to cool before proceeding.
 - Increase travel speed.
 - Reduce wire feed speed.

Weld Not Adhering Properly

Gaps present between weld and previous bead or between weld and workpiece. See areas below.

POSSIBLE CAUSES AND SOLUTIONS

1. **Incorrect welding technique:**
 - Place stringer bead at correct place in joint.
 - Adjust workpiece position or weld angle to permit proper welding to bottom of piece.
 - Pause briefly at sides during weave bead.
 - Keep arc on leading edge of weld puddle.
 - Hold Flux Gun at proper angles.

2. **Insufficient weld heat:**
 - Increase current.
 - Increase wire feed speed.

3. **Dirty workpiece:**
 - Clean workpiece down to bare metal.

4. **Insufficient weld material:**
 - Increase wire feed speed.

5. **Workpiece gap too narrow:**
 - Widen groove or increase bevel.

Coat of Slag Over Weld

POSSIBLE CAUSES AND SOLUTIONS

1. **Workpiece overheating:**
 - Reduce wire feed speed.
 - Decrease weld current.

2. **Travel speed too slow:**
 - Increase travel speed and ensure that travel speed is kept steady.

3. **Excessive material at weld:**
 - Reduce wire feed speed.

Weld Problems

Weld droops on top and underneath, or falls through entirely, making a hole.

Weld is visible underneath and bulges slightly on top.

Weld does not penetrate the joint fully, just on the surface.

POSSIBLE CAUSES AND SOLUTIONS

1. **Improper clamping:**
 - Clamp workpieces securely.
 - Make tack welds to hold workpieces.

2. **Excessive heat:**
 - Weld a small portion and allow to cool before proceeding.
 - Increase travel speed.
 - Reduce wire feed speed.

Weld Not Adhering Properly

Gaps present between weld and previous bead or between weld and workpiece. See areas below.

POSSIBLE CAUSES AND SOLUTIONS

1. **Incorrect welding technique:**
 - Place stringer bead at correct place in joint.
 - Adjust workpiece position or weld angle to permit proper welding to bottom of piece.
 - Pause briefly at sides during weave bead.
 - Keep arc on leading edge of weld puddle.
 - Hold Flux Gun at proper angles.

2. **Insufficient weld heat:**
 - Increase current.
 - Increase wire feed speed.

3. **Dirty workpiece:**
 - Clean workpiece down to bare metal.

4. **Insufficient weld material:**
 - Increase wire feed speed.

5. **Workpiece gap too narrow:**
 - Widen groove or increase bevel.

Coat of Slag Over Weld

POSSIBLE CAUSES AND SOLUTIONS

1. **Workpiece overheating:**
 - Reduce wire feed speed.
 - Decrease weld current.

2. **Travel speed too slow:**
 - Increase travel speed and ensure that travel speed is kept steady.

3. **Excessive material at weld:**
 - Reduce wire feed speed.

Weld Problems

Weld droops on top and underneath, or falls through entirely, making a hole.

Weld is visible underneath and bulges slightly on top.

Weld does not penetrate the joint fully, just on the surface.

POSSIBLE CAUSES AND SOLUTIONS

1. **Improper clamping:**
 - Clamp workpieces securely.
 - Make tack welds to hold workpieces.

2. **Excessive heat:**
 - Weld a small portion and allow to cool before proceeding.
 - Increase travel speed.
 - Reduce wire feed speed.

Weld Not Adhering Properly

Gaps present between weld and previous bead or between weld and workpiece. See areas below.

POSSIBLE CAUSES AND SOLUTIONS

1. **Incorrect welding technique:**
 - Place stringer bead at correct place in joint.
 - Adjust workpiece position or weld angle to permit proper welding to bottom of piece.
 - Pause briefly at sides during weave bead.
 - Keep arc on leading edge of weld puddle.
 - Hold Flux Gun at proper angles.

2. **Insufficient weld heat:**
 - Increase current.
 - Increase wire feed speed.

3. **Dirty workpiece:**
 - Clean workpiece down to bare metal.

4. **Insufficient weld material:**
 - Increase wire feed speed.

5. **Workpiece gap too narrow:**
 - Widen groove or increase bevel.
Porosity

Small cavities or holes in the bead.

POSSIBLE CAUSES AND SOLUTIONS

1. **Dirty workpiece or welding wire:**
 Clean workpiece down to bare metal. Make certain that wire is clean and free from oil, coatings, and other residues.
2. **Inconsistent travel speed:**
 Maintain steady travel speed.
3. **CTWD too long:**
 Reduce CTWD.

Excessive Spatter

Fine spatter is normal. Spatter that is grainy and large is a problem.

POSSIBLE CAUSES AND SOLUTIONS

1. **Dirty workpiece or welding wire:**
 Clean workpiece down to bare metal. Make certain that wire is clean and free from oil, coatings, and other residues.
2. **Wire feeding too fast:**
 Reduce wire feed speed.
3. **CTWD too long:**
 Reduce CTWD.

Crooked/Wavy Bead

POSSIBLE CAUSES AND SOLUTIONS

1. **Inaccurate welding:**
 Use two hands or rest hand on steady surface.
2. **Inconsistent travel speed:**
 Maintain steady travel speed.
3. **CTWD too long:**
 Reduce CTWD.

Burn-Through

Base material melts away, leaving a hole in the weld.

POSSIBLE CAUSES AND SOLUTIONS

1. **Workpiece overheating:**
 Reduce current and/or wire feed speed.
2. **Travel speed too slow:**
 Increase travel speed and ensure that travel speed is kept steady.
3. **Excessive material at weld:**
 Reduce wire feed speed.
TO PREVENT SERIOUS INJURY, FIRE AND BURNS:
Unplug the Welder, rest the Flux Gun on a heat-proof, electrically non-conductive surface, and allow all parts of the Welder to cool thoroughly before service.

1. **BEFORE EACH USE**, inspect the general condition of the Welder. Check for:
 - loose hardware
 - misalignment or binding of moving parts
 - damaged cord/electrical wiring
 - frayed or damaged cables
 - cracked or broken parts
 - any other condition that may affect its safe operation.

2. Periodically, have a qualified technician remove the Rear Panel and use compressed air to blow out all dust from the interior.

3. Store in a clean and dry location.

4. **For optimal weld quality**, clean and inspect the **Contact Tip** before each use, as explained below.

Nozzle and Contact Tip Inspection and Cleaning

1. **Make sure that the entire Flux Gun is completely cool and that the Power Cord is unplugged from the electrical outlet before proceeding.**

2. Pull the Nozzle to remove it.

3. Scrub the Nozzle clean with a wire brush.

4. Unscrew the Contact Tip counterclockwise and slide it off the welding wire to remove.

5. Scrub the outside of the Tip clean with a wire brush. Clean out the inside of the tip with a tip cleaner (sold separately). Check that the Tip is the proper type for the wire size used.

6. Examine the shape of the hole at the end of the Contact Tip. It should be an even circle; it should not be oblong or have any bulges in it.

7. If any problems are noted, replace the Contact Tip. Select a new Tip of the correct size for the welding wire used.

8. Reinstall the Tip and securely reinstall the Nozzle as well.
Troubleshooting

IMPORTANT!

Be CERTAIN to shut off the Welder, disconnect it from power, and discharge the Flux Gun to ground before adjusting, cleaning, or repairing the unit.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible Causes</th>
<th>Likely Solutions</th>
</tr>
</thead>
</table>
| Wire feed motor runs but wire does not feed properly | 1. Insufficient wire feed tension.
2. Incorrect wire feed roller size.
3. Damaged Flux Gun, cable, or liner assembly.
4. Feed Tensioner is too tight. | 1. Increase wire feed tension properly. Follow step 16 on page 11.
2. Flip roller to correct size, follow the Feed Roller instructions on page 9.
3. Have a qualified technician inspect these parts and replace as necessary.
4. Loosen Feed Tensioner so it applies only enough pressure to prevent continued spinning after the Gun Trigger is released. |
| Wire creates a bird’s nest during operation | 1. Excess wire feed tension.
2. Incorrect Contact Tip size.
2. Replace with the proper tip for wire used.
3. Have a qualified technician inspect and repair/replace as necessary. |
| Wire stops during welding | 1. Gun cable is severely bent and Wire Feed mechanism cannot feed wire.
2. Gun liner is clogged or worn.
3. Gun liner is too small for welding wire being used.
4. Wire is tangled on the spool.
5. Wire is not making contact with Feed Rollers.
6. Feed Roller is not making enough contact with wire or is crushing flux-cored wire. | 1. Straighten Gun cable.
2. Check gun liner for obstruction. Replace if necessary.
3. Check that gun liner is correct size for wire.
4. Check wire for cross winding or tangled spool.
5. Check Feed Rollers and ensure correct groove for wire diameter is being used.
6. Check Feed Tensioner and ensure it is set properly. |
| Welding arc not stable | 1. Wire not feeding properly.
2. Incorrect Contact Tip or liner size or excessive wear.
3. Incorrect wire feed speed.
5. Poor connection with workpiece. | 1. See first Troubleshooting section above.
2. Replace with the proper tip or liner size for wire used.
3. Adjust wire feed speed to achieve a more stable arc.
4. Have a qualified technician inspect and repair/replace as necessary.
5. Check the ground clamp connection to the workpiece and machine. Ensure the Flux Gun is properly secured. |
| Weak arc strength | 1. Incorrect line voltage.
2. Improper gauge or length of cord.
3. Not enough current. | 1. Check the line voltage and, if insufficient, have a licensed electrician remedy the situation.
2. Do not use an extension cord on this Welder. Use only one of the supplied power cords for this Welder or an identical replacement cord.
3. Switch current to proper setting for metal thickness. |

Follow all safety precautions whenever diagnosing or servicing the equipment.
Troubleshooting (continued)

IMPORTANT!

Be CERTAIN to shut off the Welder, disconnect it from power, and discharge the Flux Gun to ground before adjusting, cleaning, or repairing the unit.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible Causes</th>
<th>Likely Solutions</th>
</tr>
</thead>
</table>
| **When switched on, Power Indicator lights but Welder does not function** | 1. Tripped thermal protection device.
2. Faulty or improperly connected Trigger.
3. Machine is in low- or over-voltage protection. | 1. If the Alarm Indicator is illuminated without an error code, Welder has overheated and shut down. Stop and wait with the Power Switch ON for the Welder to cool. The Welder automatically returns to service after cooling off. Reduce duration or frequency of welding periods to help reduce wear on the Welder. Refer to Duty Cycle (Duration of Use) on page 15.
2. Ensure the gun connection is properly seated on machine. Qualified technician must check and secure/replace Trigger.
3. If the Alarm Light is illuminated, check input voltage and ensure it falls within the specified range. If input voltage is correct, turn Welder off and back on. |
| **Power ON Indicator does not light when switched on** | 1. Unit is not connected to outlet properly.
2. Outlet is unpowered.
3. Circuit supplies insufficient input voltage or amperage.
4. Plug does not have correct rating.
5. Input Power Cord is not seated properly. | 1. Verify the voltage at the outlet and the connection to the outlet.
2. Check circuit breaker/GFCI devices; if any are tripped, determine and remedy cause before resetting.
3. Verify that the circuit is designed to supply the required input voltage and amperage as detailed on the Specifications table. If the Voltage Input/Thermal Overload Indicator is illuminated on machine, check the input voltage to ensure it is within specified range.
5. Ensure the input Power Cord is fully secured. |
| **Wire feeds, but arc does not ignite** | 1. Improper ground connection.
2. Improperly sized Contact Tip.
3. Excessively worn Contact Tip.
4. Dirty Contact Tip. | 1. Make certain that the workpiece is contacted properly by the Ground Clamp and that the workpiece is properly cleaned near the ground clamp and the welding location.
2. Verify that Contact Tip is the proper size for welding wire. If needed, replace Contact Tip with proper size and type.
3. Check that the hole in the tip is not deformed or enlarged. If needed, replace Contact Tip with proper size and type.
4. Properly clean Contact Tip. |
| **Porosity in the weld metal** | 1. Dirty workpiece.
2. Gun is being used too far away from workpiece.
3. Dirty welding wire is introducing contamination into the weld. | 1. Clean workpiece down to bare metal.
2. Check CTWD (contact tip to work distance) for the proper procedure.
3. Make certain that welding wire is clean and free of rust and residues. |

Follow all safety precautions whenever diagnosing or servicing the equipment.

Record Serial Number Here:

Note: If product has no serial number, record month and year of purchase instead.

Note: Some parts are listed and shown for illustration purposes only, and are not available individually as replacement parts. Parts may not be interchangeable. Specify UPC 792363563550 when ordering parts.
Parts List and Diagram

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
<th>Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Strap</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Door Latch</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Door</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Wire Feed Mechanism</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Spool Knob</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Middle Panel</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>Power Switch</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>Cable Grommet</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>Power Cord</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>Main Control Board</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>Fan</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>Fan Cover</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>Right Side Panel</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>Left Rear Foot</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>Right Rear Foot</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>Housing</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>Front Housing</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>Ground Cable</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>Flux Gun</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>Knob</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>Front Panel</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>Front PCB</td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>Torch Cable Support</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>Left Panel</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>Output Transformer</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>Cold Feed Switch</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>Contact Tip (0.030", 1 spare)</td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>Spool Spring (not shown)</td>
<td>1</td>
</tr>
<tr>
<td>29</td>
<td>Spool Plate</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>Roller Knob</td>
<td>1</td>
</tr>
<tr>
<td>31</td>
<td>Wire Roller (0.030/0.035", not shown)</td>
<td>1</td>
</tr>
<tr>
<td>32</td>
<td>Nozzle</td>
<td>1</td>
</tr>
</tbody>
</table>

Diagram

[Diagram of the parts list and diagram with numbered parts corresponding to the parts listed above.]
THE MANUFACTURER AND/OR DISTRIBUTOR HAS PROVIDED THE PARTS LIST AND ASSEMBLY DIAGRAM IN THIS MANUAL AS A REFERENCE TOOL ONLY. NEITHER THE MANUFACTURER OR DISTRIBUTOR MAKES ANY REPRESENTATION OR WARRANTY OF ANY KIND TO THE BUYER THAT HE OR SHE IS QUALIFIED TO MAKE ANY REPAIRS TO THE PRODUCT, OR THAT HE OR SHE IS QUALIFIED TO REPLACE ANY PARTS OF THE PRODUCT. IN FACT, THE MANUFACTURER AND/OR DISTRIBUTOR EXPRESSLY STATES THAT ALL REPAIRS AND PARTS REPLACEMENTS SHOULD BE UNDERTAKEN BY CERTIFIED AND LICENSED TECHNICIANS, AND NOT BY THE BUYER. THE BUYER ASSUMES ALL RISK AND LIABILITY ARISING OUT OF HIS OR HER REPAIRS TO THE ORIGINAL PRODUCT OR REPLACEMENT PARTS THERETO, OR ARISING OUT OF HIS OR HER INSTALLATION OF REPLACEMENT PARTS THERETO.

Limited 90 Day Warranty

Harbor Freight Tools Co. makes every effort to assure that its products meet high quality and durability standards, and warrants to the original purchaser that this product is free from defects in materials and workmanship for the period of 90 days from the date of purchase. This warranty does not apply to damage due directly or indirectly, to misuse, abuse, negligence or accidents, repairs or alterations outside our facilities, criminal activity, improper installation, normal wear and tear, or to lack of maintenance. We shall in no event be liable for death, injuries to persons or property, or for incidental, contingent, special or consequential damages arising from the use of our product. Some states do not allow the exclusion or limitation of incidental or consequential damages, so the above limitation of exclusion may not apply to you. THIS WARRANTY IS EXPRESSLY IN LIEU OF ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING THE WARRANTIES OF MERCHANTABILITY AND FITNESS. To take advantage of this warranty, the product or part must be returned to us with transportation charges prepaid. Proof of purchase date and an explanation of the complaint must accompany the merchandise. If our inspection verifies the defect, we will either repair or replace the product at our election or we may elect to refund the purchase price if we cannot readily and quickly provide you with a replacement. We will return repaired products at our expense, but if we determine there is no defect, or that the defect resulted from causes not within the scope of our warranty, then you must bear the cost of returning the product.

This warranty gives you specific legal rights and you may also have other rights which vary from state to state.